
4/18/97

Error Correction Control and
Parity BIOS Implementation

Example

White Paper

Revision 1.2

THIS SPECIFICATION [DOCUMENT] IS PROVIDED "AS IS" WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all
liability, including liability for infringement of any proprietary rights, relating to use of information in this
specification. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is
granted herein.

ECC and Parity BIOS Implementation Example Revision 1.2

4/18/97 2 of 10

Revision History
Revision Date By Description

0.1 03/14/97 J. Carter Initial Draft taken from ECC white
paper and impromptu knowledge. - JCC

0.2 03/17/97 J. Carter Added basic schematic drawings and
summarized the overview section. Any
detail previously in the overview
moved to BIOS implementation
section. - JCC

1.0 03/19/97 J. Carter Added subsection titles and changed
copyright date to 1997. - JCC

1.1 04/07/97 N Yoke Changed title from ECC/Parity BIOS
Implementation Specification.
Changed headers, footers, revision
history, and disclaimer to comply with
format for other collateral documents.
Used “DMI BIOS Support: Interface
Requirements Revision 2.1” as
guideline. Minor modifications to
content of document. - NJY/JCC

1.2 04/18/97 N Yoke Polished up and replaced text with
Flow Chart. Changed Title added
disclaimer. - NJY

This document is for informational purposes only. INTEL CORPORATION MAKES NO WARRANTIES,
EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give you any
license to the patents, trademarks, copyrights, or other intellectual property rights except as expressly provided in
any written license agreement from Intel Corporation.

Intel Corporation does not make any representation or warranty regarding specifications in this document or any
product or item developed based on these specifications. Intel Corporation disclaims all express and implied
warranties, including but not limited to the implied warranties or merchantability, fitness for a particular purpose
and freedom from infringement. Without limiting the generality of the foregoing Intel Corporation does not make
any warranty of any kind that any item developed based on these specifications, or any portion of a specification,
will not infringe any copyright, patent, trade secret or other intellectual property right of any person or entity in
any country. It is your responsibility to seek licenses for such intellectual property rights where appropriate. Intel
Corporation shall not be liable for any damages arising out of or in connection with the use of these
specifications, including liability for lost profit, business interruption, or any other damages whatsoever. Some
states do not allow the exclusion or limitation of liability or consequential or incidental damages; the above
limitation may not apply to you.

Intel is a registered trademark of Intel Corporation.

Copyright© 1997 Intel Corporation. All rights reserved.

ECC and Parity BIOS Implementation Example Revision 1.2

4/18/97 3 of 10

CONTENTS

1.1 INTRODUCTION...4
1.2 DEFINITION OF TERMS..4
1.3 SYSTEM BIOS RESPONSIBILITY..4
1.4 DESIGN REQUIREMENTS AND INTEL CHIPSET SOLUTIONS...5

1.4.1 North Bridge...5

1.4.2 South Bridge ...5

1.5 BIOS IMPLEMENTATION EXAMPLE ..5
1.5.1 Diagram 1.0 ..6

1.6 BIOS IMPLEMENTATION EXAMPLE DETAILS..6
1.6.1 BIOS Design Goals...6

1.6.2 Detection...6

1.6.3 Initialization..7

1.6.4 Setup ...7

1.6.5 Additional Important Sequence Details Included In The Sample Implementation7

1.7 SUMMARY ..10

ECC and Parity BIOS Implementation Example Revision 1.2

4/18/97 4 of 10

1.1 Introduction
This information is intended to allow one to provide the System BIOS interfaces and programming for
Intel’s ECC/Parity chipset implementation. This document can also be used as a guide, along with the other
referenced ECC/Parity documents, to aid ECC/parity instrumentation efforts.

1.2 Definition of Terms
DMI Desktop Management Interface. See “Desktop Management BIOS

Specification” Version 2.0, October 16, 1995 for more details.

ECC Error Correction Control—Method of handling system memory errors using
multiple bits per unit of memory.

NVRAM Non-Volatile RAM—Entity that describes a type of storage used to retain
programmed information after power is removed from the CPU and main
memory.

PARITY Method of handling system memory errors using a single bit per unit of memory.

SCRUBBING A process of reading a memory location and then writing the value and error bits
back to DRAM. If there was a noise-related error, it will be corrected.

SYSTEM EVENT LOG Log that is used to store critical system status in an area of NV RAM.

1.3 System BIOS Responsibility
This section provides a general overview of the System BIOS responsibilities for handling ECC and Parity
implementations. There are four general items defined as:

• Initialize Hardware —During POST (Power On Self Test) the BIOS needs to detect the presence of
ECC and Parity memory installed in the system. This information also needs to be stored in some form
of NV RAM. The BIOS should also initialize ALL DRAM memory used in the system once ECC is
enabled in the chipset with the error generation turned off.

• Report Errors —The BIOS needs to report errors back to the user. In situations where DMI BIOS
Event Logging support is present, the event log must be updated with the error. Refer to the “DMI
BIOS Support: Interface Requirements Revision 2.1” document for details on this interface. In
situations where DMI BIOS Event Logging support is not present, the BIOS should implement a clear
NMI handler as to the effect and location of the error.

• Setup/Configuration Interface—The BIOS should provide a setup interface to allow the user to
enable/disable ECC or parity checking in the system. In situations where DMI BIOS Event Logging
support is present, setup should also provide a switch for enabling/disabling the logging of these type of
events, as well as a view log option to view all events logged.

• Correction of Errors —Single-bit ECC errors are correctable. This is due to the fact that the specific
data bit that has the error can be identified and corrected before the data is passed back to the
requesting mechanism.

This is optimal because it allows the user to keep on working and in the best case being notified that
there was an error. This allows the user to take whatever measures are necessary to correct the
situation later. This may include replacing a bad SIMM in the case of hardware errors or simply having
the memory in question “scrubbed” for noise-related errors.

“Scrubbing” involves reading a memory location and then writing the value and error bits back to
DRAM. If there was a noise-related error it will be corrected. Otherwise, the incorrect checking
information will always show up as an error and look like a hardware-related error if that specific
memory location is not ever written out.

ECC and Parity BIOS Implementation Example Revision 1.2

4/18/97 5 of 10

Hence, the benefits of ECC memory are obvious over Parity. You can probably expect to see certain
BIOS or operating system software that actually scrubs memory perhaps in a background routine or
SMM for BIOS, invisibly to the user.

1.4 Design Requirements and Intel Chipset Solutions
The board design must supply a predictable mechanism to generate SMI and NMI signals. Intel presently
has two production memory controller chips that support ECC and Parity implementations, 82430HX and
82440FX. These chips have different pin layouts for providing the necessary signals to implement an
ECC/Parity solution in BIOS.

This section discusses the solutions offered by the North Bridge chips 82430HX and 82440FX in
conjunction with its South Bridge counterparts PIIX3 and PIIX4.

1.4.1 North Bridge
The 82430HX and 82440FX chips are similar but are distinguished by some errata and these functional
differences:

• The 82430HX allows byte memory access in normal or parity mode and qword accesses only in ECC
mode, whereas the 440FX dictates qword access at all times. This means that on the 82430HX, parity
modules can support ECC mode but ECC modules cannot support parity mode. Normal or non-
checking mode has no effect on the system. Also, the 82440FX can use ECC or parity modules for
either mode since qwords are always in order.

• The 82430HX provides a flexible error indicating output signal that can operate in pulse or level mode,
whereas the 82440FX does not. This allows the 82430HX to provide an indication of single bit or
multiple bit errors through one signal when coupled with a South Bridge chip capable of distinguishing
the pulse or level mode of operation.

The errata involved really only hinders the ability to offer a flexible solution and exist in early revisions of
the 82430HX chip. It will not be considered in detail here. Later revisions of the chipset will be assumed in
which all functionality is intact.

1.4.2 South Bridge
The second part of the equation is the South Bridge chip. Considered here is the PIIX3 and PIIX4. The
PIIX3 has a flexible EXTSMI input that accepts pulse mode or level mode indication. When in level mode
the input always generates a SMI to the CPU. Whereas, in pulse mode the PIIX3 will generate an NMI if a
single pulse is received and a SMI if more than one clock pulse is received. The PIIX4 does not provide
this functionality; instead it provides a single EXTSMI input.

1.5 BIOS Implementation Example
This BIOS implementation example for handling ECC uses a memory controller chip with the flexible pulse
or level mode output signal and a South Bridge chip with the dual function input EXTSMI signal. The
82430HX and PIIX3 work together in this fashion when the SERR signal of the 82430HX is connected to
the EXTSMI of the PIIX3.

Note that the output signal from the memory controller indicating an error is ANDed with some other
controllable signal so that error generating can be disabled without hindering other functionality that may be
connected to the EXTSMI input of the PIIX. A GPIO is used for this purpose. See the diagram on the next
page.

ECC and Parity BIOS Implementation Example Revision 1.2

4/18/97 6 of 10

1.5.1 BIOS implementation example
The ECC/Parity output signal (SERR) from the memory controller (82430HX) is connected to the EXTSMI
(PIIX3) signal on the South Bridge ANDed with a GPIO. The memory controller signal can be pulsed or
level driven and the input on the South Bridge can be programmed to accept either and vary its output via
NMI or SMI accordingly. The AND gate is necessary for cases where the BIOS might want to disable error
generating of SMI.

 Future memory controllers and South Bridge chips may vary the naming of signals but it is expected that
the functionality will remain the same to allow this example implementation to continue to operate.

1.6 BIOS Implementation Example Details

1.6.1 BIOS Design Goals
In general, the goal of BIOS and motherboard design is to provide a robust solution. Thus, it is desirable
for the BIOS to provide a mechanism to identify parity errors or distinguishable single or multi-bit ECC
errors and take appropriate action.

For this example implementation, the hardware configuration was outlined above. With the emergence of
manageability applications in the corporate desktop marketplace, this example implementation further
facilitates using an SMI handler to log ECC error events, single and multiple alike in the DMI space and
report it through some desktop management software.

1.6.2 Detection
As mentioned in the “System BIOS Responsibility” section (1.3), the BIOS must detect ECC/Parity
memory installed in the system during POST and initialize this memory appropriately. For the example
implementation, detection is accomplished through testing memory by writing out a known pattern with
parity or ECC enabled in the chipset. This ensures that the parity or ECC information is also written out to
the additional bits used to store the error-checking data. Next, the memory is read back and the error-
checking bits are compared with the actual data bits value read.

A failure to compare (as represented by the status register in the chipset) indicates an error. Any
hardware-imposed error will be detected at this point, since they happen every time the memory in
question is accessed. If an error occurs, ECC or parity must be turned off in the chipset since ECC
or parity memory is not present or has inherent hardware problems keeping it from functioning
correctly.

82430HX Memory
Controller

EXTSMI

GPIO Pin

To PCI Slots

PIIX3

NMI

SERR SMI

To CPU

To CPU

ECC and Parity BIOS Implementation Example Revision 1.2

4/18/97 7 of 10

1.6.3 Initialization
Once ECC or parity is detected, this example implementation initializes ALL DRAM to the extent that the
error-checking bits are initially written with the appropriate data before boot time to ensure that any
operating system or application does not try to read a memory location before having this checking data
written first.

This includes all DRAM space, including but not limited to: Lower 640K, SMRAM, Expansion
ROM space, BIOS ROM space, and all extended DRAM from 1M to Top Of Memory (TOM).

1.6.4 Setup
The BIOS example implementation setup reflects the capability of the system. This means that only the
setup questions and options available to the system show up through dynamic setup nodes. For example, if
the 82430HX memory controller is used and ECC memory is detected in the system, a Parity option is not
visible in the option list for “Memory Error Correction.” Also, if non-error correcting memory is detected
in the system then the setup question for “Memory Error Correction” is not visible in setup.

1.6.5 Additional Important Sequence Details Included In The Sample
Implementation
After memory sizing and before memory testing, the sample BIOS implementation tests the DRAM for
ECC/Parity capabilities. The exact capabilities are stored in scratch CMOS for setup to use when making
dynamic determination of what fields to make visible. If error correction capable memory is detected, the
criteria on the next page is used:

ECC and Parity BIOS Implementation Example Revision 1.2

4/18/97 8 of 10

-Memory Siz ing and Typing.
-ECC/Par i ty Capabi l i t ies Test ing

Was Error Correct ion
Capab le Memory

Detec ted?

I s CMOS RAM
Checksum Va l id?

Is ECC Enabled in BIOS
Setup (aka CMOS RAM)?

-Enable ECC In format ion Generat ion
-Keep Error Generat ion Disabled (v ia GPIO
& AND Gate)

Memory Test ing. Used to make sure ALL
DRAM is INIT IALIZED.

Is ECC Enabled in
BIOS Setup (aka

C M O S R A M) ?

Enable ECC Error
Generat ion (v ia

GPIO & AND Gate)

Cont inue Wi th POST. . .

Yes

Yes

Yes

N o

N o

N o

N o

Store The Type of Error Correct ion
Memory In CMOS RAM For La ter Use

Yes

ECC and Parity BIOS Implementation Example Revision 1.2

4/18/97 9 of 10

The handling of errors at runtime varies, depending on the type of error. For the example implementation,
on any error, an SMI is generated with the EXTSMI signal in level mode. The following steps are
performed:

Enter SMM Hand ler

Is Th is An EXTSMI Caused
BY An ECC/Par i ty Error (read

var ious i tems and memory
control ler status registers)

Was This A Sing le Bi t
Correctable Error (read

memory contro l ler s tatus
registers)

Process Error In format ion Gathered:
- Log Error Found in DMI Event Log
- Clear Out Memory Contro l ler Status
Regis ters

Process Other SMI Events As Requi red By
B IOS

Yes

Yes

Since Par i ty Mode Or Mul t i -Bi t
Error:

- Put PI IX In Pulse Mode for
EXTSMI .

- Generate NMI on EXTSMI (which
is processed af ter SMM "RSM"

instruct ion occurs).

N o

1. Therefore, the SMM handler exits normally at this point to allow the NMI to take place.

2. The example BIOS implementation’s NMI handler distinguishes between Parity and Multiple bit ECC
errors and displays a brief message indicating the type of error and the memory bank containing the

ECC and Parity BIOS Implementation Example Revision 1.2

4/18/97 10 of 10

error. Note that in the case where the operating system hooks the NMI handler the BIOS has no control
over the message displayed.

1.7 Summary
Most of the emphasis here was placed on the example BIOS implementation. The chipset and board design
requirements are necessary to accomplish this. When designs vary from this example implementation, it
may hinder feature support and ultimately cause customer dissatisfaction.

It is expected that the future memory controllers will provide the ability to write corrected data back out to
the DRAM on correctable single bit ECC errors. This eliminates the need for memory scrubbing and soft
errors manifesting themselves in multitude thus hindering performance.

